Point Regular Normal Subgroups of Flag Transitive Automorphism Groups of 2-Designs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Normal Structure of Flag Transitive Automorphism Groups of 2-designs

Let D:= (X,B,I) be a 2-design. For each xeX set Bx:= {jeB:xIj}, and define Xh dually for each h e B. We call D reduced if Xh = Xt implies that h = i for all h,ieB. Assume that D is a reduced 2-design with parameters v, b, k, r, X. Let G be a flag transitive automorphism group of D. By F*(G) we mean (as usual) the generalized Fitting subgroup of G which is defined to be the inverse image in G of...

متن کامل

Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups

The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).

متن کامل

2 - Transitive and flag - transitive designs

Throughout this paper V always will denote a design with "t; points, k > 2 points per line, and>' = 1 line through any two different points. Let G <:: Aut (V). I will primarily be interested in the case in which G either is 2-transitive on the points of VOl' is transitive on the flags (incident point-line pairs) ofV. Note that 2-transitivity implies flag-transitivity since>. = 1. The subject ma...

متن کامل

Flag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type

Let $G$ be an automorphism group of a‎ ‎$2$-$(v,k,4)$ symmetric design $mathcal D$‎. ‎In this paper‎, ‎we‎ ‎prove that if $G$ is flag-transitive point-primitive‎, ‎then the‎ ‎socle of $G$ cannot be an exceptional group of Lie type‎.

متن کامل

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1996

ISSN: 0001-8708

DOI: 10.1006/aima.1996.0049